Copied to
clipboard

G = C334M4(2)  order 432 = 24·33

2nd semidirect product of C33 and M4(2) acting via M4(2)/C4=C4

metabelian, soluble, monomial

Aliases: C334M4(2), C334C88C2, C4.(C33⋊C4), C12.1(C32⋊C4), C3⋊Dic3.41D6, (C32×C12).1C4, (C3×C12).14Dic3, C324(C4.Dic3), C32(C32⋊M4(2)), C6.9(C2×C32⋊C4), (C12×C3⋊S3).3C2, (C6×C3⋊S3).13C4, (C4×C3⋊S3).10S3, (C2×C3⋊S3).8Dic3, C2.4(C2×C33⋊C4), (C32×C6).16(C2×C4), (C3×C6).23(C2×Dic3), (C3×C3⋊Dic3).49C22, SmallGroup(432,636)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C334M4(2)
C1C3C33C32×C6C3×C3⋊Dic3C334C8 — C334M4(2)
C33C32×C6 — C334M4(2)
C1C2C4

Generators and relations for C334M4(2)
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, dbd-1=ab=ba, ac=ca, dad-1=a-1b, eae=a-1, bc=cb, ebe=b-1, dcd-1=c-1, ce=ec, ede=d5 >

Subgroups: 424 in 84 conjugacy classes, 21 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C4.Dic3, C3×C3⋊S3, C32×C6, C322C8, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, C32⋊M4(2), C334C8, C12×C3⋊S3, C334M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, M4(2), C2×Dic3, C32⋊C4, C4.Dic3, C2×C32⋊C4, C33⋊C4, C32⋊M4(2), C2×C33⋊C4, C334M4(2)

Smallest permutation representation of C334M4(2)
On 48 points
Generators in S48
(2 16 38)(4 40 10)(6 12 34)(8 36 14)(18 45 31)(20 25 47)(22 41 27)(24 29 43)
(1 15 37)(2 16 38)(3 39 9)(4 40 10)(5 11 33)(6 12 34)(7 35 13)(8 36 14)(17 44 30)(18 45 31)(19 32 46)(20 25 47)(21 48 26)(22 41 27)(23 28 42)(24 29 43)
(1 37 15)(2 16 38)(3 39 9)(4 10 40)(5 33 11)(6 12 34)(7 35 13)(8 14 36)(17 30 44)(18 45 31)(19 32 46)(20 47 25)(21 26 48)(22 41 27)(23 28 42)(24 43 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23)(2 20)(3 17)(4 22)(5 19)(6 24)(7 21)(8 18)(9 44)(10 41)(11 46)(12 43)(13 48)(14 45)(15 42)(16 47)(25 38)(26 35)(27 40)(28 37)(29 34)(30 39)(31 36)(32 33)

G:=sub<Sym(48)| (2,16,38)(4,40,10)(6,12,34)(8,36,14)(18,45,31)(20,25,47)(22,41,27)(24,29,43), (1,15,37)(2,16,38)(3,39,9)(4,40,10)(5,11,33)(6,12,34)(7,35,13)(8,36,14)(17,44,30)(18,45,31)(19,32,46)(20,25,47)(21,48,26)(22,41,27)(23,28,42)(24,29,43), (1,37,15)(2,16,38)(3,39,9)(4,10,40)(5,33,11)(6,12,34)(7,35,13)(8,14,36)(17,30,44)(18,45,31)(19,32,46)(20,47,25)(21,26,48)(22,41,27)(23,28,42)(24,43,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,44)(10,41)(11,46)(12,43)(13,48)(14,45)(15,42)(16,47)(25,38)(26,35)(27,40)(28,37)(29,34)(30,39)(31,36)(32,33)>;

G:=Group( (2,16,38)(4,40,10)(6,12,34)(8,36,14)(18,45,31)(20,25,47)(22,41,27)(24,29,43), (1,15,37)(2,16,38)(3,39,9)(4,40,10)(5,11,33)(6,12,34)(7,35,13)(8,36,14)(17,44,30)(18,45,31)(19,32,46)(20,25,47)(21,48,26)(22,41,27)(23,28,42)(24,29,43), (1,37,15)(2,16,38)(3,39,9)(4,10,40)(5,33,11)(6,12,34)(7,35,13)(8,14,36)(17,30,44)(18,45,31)(19,32,46)(20,47,25)(21,26,48)(22,41,27)(23,28,42)(24,43,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,44)(10,41)(11,46)(12,43)(13,48)(14,45)(15,42)(16,47)(25,38)(26,35)(27,40)(28,37)(29,34)(30,39)(31,36)(32,33) );

G=PermutationGroup([[(2,16,38),(4,40,10),(6,12,34),(8,36,14),(18,45,31),(20,25,47),(22,41,27),(24,29,43)], [(1,15,37),(2,16,38),(3,39,9),(4,40,10),(5,11,33),(6,12,34),(7,35,13),(8,36,14),(17,44,30),(18,45,31),(19,32,46),(20,25,47),(21,48,26),(22,41,27),(23,28,42),(24,29,43)], [(1,37,15),(2,16,38),(3,39,9),(4,10,40),(5,33,11),(6,12,34),(7,35,13),(8,14,36),(17,30,44),(18,45,31),(19,32,46),(20,47,25),(21,26,48),(22,41,27),(23,28,42),(24,43,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23),(2,20),(3,17),(4,22),(5,19),(6,24),(7,21),(8,18),(9,44),(10,41),(11,46),(12,43),(13,48),(14,45),(15,42),(16,47),(25,38),(26,35),(27,40),(28,37),(29,34),(30,39),(31,36),(32,33)]])

42 conjugacy classes

class 1 2A2B3A3B···3G4A4B4C6A6B···6G6H6I8A8B8C8D12A12B12C···12N12O12P
order12233···344466···6668888121212···121212
size111824···429924···4181854545454224···41818

42 irreducible representations

dim11111222222444444
type+++++--++
imageC1C2C2C4C4S3D6Dic3Dic3M4(2)C4.Dic3C32⋊C4C2×C32⋊C4C33⋊C4C32⋊M4(2)C2×C33⋊C4C334M4(2)
kernelC334M4(2)C334C8C12×C3⋊S3C32×C12C6×C3⋊S3C4×C3⋊S3C3⋊Dic3C3×C12C2×C3⋊S3C33C32C12C6C4C3C2C1
# reps12122111124224448

Matrix representation of C334M4(2) in GL4(𝔽73) generated by

106854
015944
0080
00064
,
80048
064390
0080
00064
,
6404025
0643942
0080
0008
,
11161969
60591158
4306257
0431314
,
0272563
4601025
00046
00270
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,68,59,8,0,54,44,0,64],[8,0,0,0,0,64,0,0,0,39,8,0,48,0,0,64],[64,0,0,0,0,64,0,0,40,39,8,0,25,42,0,8],[11,60,43,0,16,59,0,43,19,11,62,13,69,58,57,14],[0,46,0,0,27,0,0,0,25,10,0,27,63,25,46,0] >;

C334M4(2) in GAP, Magma, Sage, TeX

C_3^3\rtimes_4M_4(2)
% in TeX

G:=Group("C3^3:4M4(2)");
// GroupNames label

G:=SmallGroup(432,636);
// by ID

G=gap.SmallGroup(432,636);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,141,64,58,2804,298,2693,1027,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,d*b*d^-1=a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b,e*a*e=a^-1,b*c=c*b,e*b*e=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^5>;
// generators/relations

׿
×
𝔽